Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 15(744): eabn7082, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35881692

RESUMEN

Osteoarthritis (OA) and posttraumatic OA (PTOA) are caused by an imbalance in catabolic and anabolic processes in articular cartilage and proinflammatory changes throughout the joint, leading to joint degeneration and pain. We examined whether interleukin-6 (IL-6) signaling contributed to cartilage degradation and pain in PTOA. Genetic ablation of Il6 in male mice decreased PTOA-associated cartilage catabolism, innervation of the knee joint, and nociceptive signaling without improving PTOA-associated subchondral bone sclerosis or chondrocyte apoptosis. These effects were not observed in female Il6-/- mice. Compared with wild-type mice, the activation of the IL-6 downstream mediators STAT3 and ERK was reduced in the knees and dorsal root ganglia (DRG) of male Il6-/- mice after knee injury. Janus kinases (JAKs) were critical for STAT and ERK signaling in cartilage catabolism and DRG pain signaling in tissue explants. Whereas STAT3 signaling was important for cartilage catabolism, ERK signaling mediated neurite outgrowth and the activation of nociceptive neurons. These data demonstrate that IL-6 mediates both cartilage degradation and pain associated with PTOA in a sex-specific manner and identify tissue-specific contributions of downstream effectors of IL-6 signaling, which are potential therapeutic targets for disease-modifying OA drugs.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Femenino , Interleucina-6/metabolismo , Masculino , Ratones , Osteoartritis/genética , Dolor/metabolismo
2.
Magn Reson Imaging ; 92: 243-250, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35777687

RESUMEN

PURPOSE: To evaluate the magic angle effect on diffusion tensor imaging (DTI) measurements in rat ligaments and mouse brains. METHODS: Three rat knee joints and three mouse brains were scanned at 9.4 T using a modified 3D diffusion-weighted spin echo pulse sequence with the isotropic spatial resolution of 45 µm. The b value was 1000 s/mm2 for rat knee and 4000 s/mm2 for mouse brain. DTI model was used to investigate the quantitative metrics at different orientations with respect to the main magnetic field. The collagen fiber structure of the ligament was validated with polarized light microscopy (PLM) imaging. RESULTS: The signal intensity, signal-to-noise ratio (SNR), and DTI metrics in the ligament were strongly dependent on the collagen fiber orientation with respect to the main magnetic field from both simulation and actual MRI scans. The variation of fractional anisotropy (FA) was about ~32%, and the variation of mean diffusivity (MD) was ~11%. These findings were further validated with the numerical simulation at different SNRs (~10.0 to 86.0). Compared to the ligament, the DTI metrics showed little orientation dependence in mouse brains. CONCLUSION: Magic angle effect plays an important role in DTI measurements in the highly ordered collagen-rich tissues, while MD showed less orientation dependence than FA.


Asunto(s)
Encéfalo , Imagen de Difusión Tensora , Animales , Anisotropía , Encéfalo/diagnóstico por imagen , Colágeno , Imagen de Difusión Tensora/métodos , Ligamentos , Ratones , Ratas
3.
Cell Rep ; 39(6): 110785, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545045

RESUMEN

Mesenchymal progenitors of the lateral plate mesoderm give rise to various cell fates within limbs, including a heterogeneous group of muscle-resident mesenchymal cells. Often described as fibro-adipogenic progenitors, these cells are key players in muscle development, disease, and regeneration. To further define this cell population(s), we perform lineage/reporter analysis, flow cytometry, single-cell RNA sequencing, immunofluorescent staining, and differentiation assays on normal and injured murine muscles. Here we identify six distinct Pdgfra+ non-myogenic muscle-resident mesenchymal cell populations that fit within a bipartite differentiation trajectory from a common progenitor. One branch of the trajectory gives rise to two populations of immune-responsive mesenchymal cells with strong adipogenic potential and the capability to respond to acute and chronic muscle injury, whereas the alternative branch contains two cell populations with limited adipogenic capacity and inherent mineralizing capabilities; one of the populations displays a unique neuromuscular junction association and an ability to respond to nerve injury.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético , Adipogénesis , Animales , Diferenciación Celular , Ratones , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiología
4.
Elife ; 112022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179487

RESUMEN

Hypertrophic chondrocytes give rise to osteoblasts during skeletal development; however, the process by which these non-mitotic cells make this transition is not well understood. Prior studies have also suggested that skeletal stem and progenitor cells (SSPCs) localize to the surrounding periosteum and serve as a major source of marrow-associated SSPCs, osteoblasts, osteocytes, and adipocytes during skeletal development. To further understand the cell transition process by which hypertrophic chondrocytes contribute to osteoblasts or other marrow associated cells, we utilized inducible and constitutive hypertrophic chondrocyte lineage tracing and reporter mouse models (Col10a1CreERT2; Rosa26fs-tdTomato and Col10a1Cre; Rosa26fs-tdTomato) in combination with a PDGFRaH2B-GFP transgenic line, single-cell RNA-sequencing, bulk RNA-sequencing, immunofluorescence staining, and cell transplantation assays. Our data demonstrate that hypertrophic chondrocytes undergo a process of dedifferentiation to generate marrow-associated SSPCs that serve as a primary source of osteoblasts during skeletal development. These hypertrophic chondrocyte-derived SSPCs commit to a CXCL12-abundant reticular (CAR) cell phenotype during skeletal development and demonstrate unique abilities to recruit vasculature and promote bone marrow establishment, while also contributing to the adipogenic lineage.


Asunto(s)
Médula Ósea , Condrocitos , Adipocitos , Animales , Diferenciación Celular , Ratones , Osteoblastos , Osteogénesis , ARN/metabolismo , Células Madre/metabolismo
5.
PLoS Genet ; 17(12): e1009982, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34928956

RESUMEN

Sonic Hedgehog/GLI3 signaling is critical in regulating digit number, such that Gli3-deficiency results in polydactyly and Shh-deficiency leads to digit number reductions. SHH/GLI3 signaling regulates cell cycle factors controlling mesenchymal cell proliferation, while simultaneously regulating Grem1 to coordinate BMP-induced chondrogenesis. SHH/GLI3 signaling also coordinates the expression of additional genes, however their importance in digit formation remain unknown. Utilizing genetic and molecular approaches, we identified HES1 as a downstream modifier of the SHH/GLI signaling axis capable of inducing preaxial polydactyly (PPD), required for Gli3-deficient PPD, and capable of overcoming digit number constraints of Shh-deficiency. Our data indicate that HES1, a direct SHH/GLI signaling target, induces mesenchymal cell proliferation via suppression of Cdkn1b, while inhibiting chondrogenic genes and the anterior autopod boundary regulator, Pax9. These findings establish HES1 as a critical downstream effector of SHH/GLI3 signaling in the development of PPD.


Asunto(s)
Proteínas Hedgehog/genética , Proteínas del Tejido Nervioso/genética , Factor de Transcripción PAX9/genética , Polidactilia/genética , Pulgar/anomalías , Factor de Transcripción HES-1/genética , Proteína Gli3 con Dedos de Zinc/genética , Animales , División Celular/genética , Proliferación Celular/genética , Condrogénesis/genética , Cromatina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Modelos Animales de Enfermedad , Humanos , Esbozos de los Miembros/crecimiento & desarrollo , Esbozos de los Miembros/metabolismo , Mesodermo/crecimiento & desarrollo , Ratones , Polidactilia/patología , Pulgar/patología
6.
J Biomed Mater Res A ; 109(10): 1792-1802, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33754494

RESUMEN

Critical-sized defects remain a significant challenge in orthopaedics. 3D printed scaffolds are a promising treatment but are still limited due to inconsistent osseous integration. The goal of the study is to understand how changing the surface roughness of 3D printed titanium either by surface treatment or artificially printing rough topography impacts the mechanical and biological properties of 3D printed titanium. Titanium tensile samples and discs were printed via laser powder bed fusion. Roughness was manipulated by post-processing printed samples or by directly printing rough features. Experimental groups in order of increasing surface roughness were Polished, Blasted, As Built, Sprouts, and Rough Sprouts. Tensile behavior of samples showed reduced strength with increasing surface roughness. MC3T3 pre-osteoblasts were seeded on discs and analyzed for cellular proliferation, differentiation, and matrix deposition at 0, 2, and 4 weeks. Printing roughness diminished mechanical properties such as tensile strength and ductility without clear benefit to cell growth. Roughness features were printed on mesoscale, unlike samples in literature in which roughness on microscale demonstrated an increase in cell activity. The data suggest that printing artificial roughness on titanium scaffold is not an effective strategy to promote osseous integration.


Asunto(s)
Osteoblastos/citología , Impresión Tridimensional , Titanio/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aleaciones/farmacología , Animales , Línea Celular , Colágeno/metabolismo , Ratones , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/ultraestructura , Osteocalcina , Estrés Mecánico , Propiedades de Superficie , Resistencia a la Tracción
7.
Methods Mol Biol ; 2230: 283-302, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33197020

RESUMEN

Cartilage and bone are specialized skeletal tissues composed of unique extracellular matrices. Bone, in particular, has a highly calcified or mineralized matrix that makes microtomy and standard histological studies very challenging. Therefore, methods to appropriately fix and decalcify mineralized skeletal tissues have been developed to allow for paraffin processing and standard microtomy. In this chapter, we will illustrate methods for tissue grossing, fixation, decalcification, paraffin processing, embedding, sectioning, and routine histological staining of demineralized murine skeletal tissues. We will also discuss methods for decalcified frozen sectioning of skeletal tissues with and without the use of a tape-transfer system.


Asunto(s)
Huesos/ultraestructura , Cartílago/ultraestructura , Técnica de Descalcificación/métodos , Microtomía/métodos , Animales , Secciones por Congelación/métodos , Ratones , Adhesión en Parafina/métodos , Coloración y Etiquetado/métodos , Fijación del Tejido/métodos
8.
Methods Mol Biol ; 2230: 415-423, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33197029

RESUMEN

Primary chondrocyte isolation and culture is a useful tool to characterize how cellular perturbations impact chondrocyte behavior and mineralization in vitro. This protocol conveys methods for isolating and culturing primary chondrocytes from costal and growth plate cartilage. Following gross dissection of the neonatal murine anterior rib cage or long bone growth plate cartilage, chondrocytes are isolated via enzymatic digestion and plated at high density. Genetic perturbation of plated primary murine chondrocytes using viral infection of Cre recombinase to excise floxed alleles and/or overexpress genes of interest are also described.


Asunto(s)
Separación Celular/métodos , Condrocitos/citología , Cultivo Primario de Células/métodos , Animales , Cartílago/crecimiento & desarrollo , Placa de Crecimiento/crecimiento & desarrollo , Ratones
9.
J Clin Invest ; 130(7): 3603-3620, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32484460

RESUMEN

Emerging immune therapy, such as with the anti-programmed cell death-1 (anti-PD-1) monoclonal antibody nivolumab, has shown efficacy in tumor suppression. Patients with terminal cancer suffer from cancer pain as a result of bone metastasis and bone destruction, but how PD-1 blockade affects bone cancer pain remains unknown. Here, we report that mice lacking Pdcd1 (Pd1-/-) demonstrated remarkable protection against bone destruction induced by femoral inoculation of Lewis lung cancer cells. Compared with WT mice, Pd1-/- mice exhibited increased baseline pain sensitivity, but the development of bone cancer pain was compromised in Pd1-/- mice. Consistently, these beneficial effects in Pd1-/- mice were recapitulated by repeated i.v. applications of nivolumab in WT mice, even though nivolumab initially increased mechanical and thermal pain. Notably, PD-1 deficiency or nivolumab treatment inhibited osteoclastogenesis without altering tumor burden. PD-L1 and CCL2 are upregulated within the local tumor microenvironment, and PD-L1 promoted RANKL-induced osteoclastogenesis through JNK activation and CCL2 secretion. Bone cancer upregulated CCR2 in primary sensory neurons, and CCR2 antagonism effectively reduced bone cancer pain. Our findings suggest that, despite a transient increase in pain sensitivity following each treatment, anti-PD-1 immunotherapy could produce long-term benefits in preventing bone destruction and alleviating bone cancer pain by suppressing osteoclastogenesis.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Carcinoma Pulmonar de Lewis , Proteínas de Neoplasias , Nivolumab/farmacología , Osteoclastos/metabolismo , Receptor de Muerte Celular Programada 1 , Animales , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Dolor en Cáncer/tratamiento farmacológico , Dolor en Cáncer/genética , Dolor en Cáncer/metabolismo , Dolor en Cáncer/patología , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Femenino , Ratones , Ratones Noqueados , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Osteoclastos/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo
10.
Magn Reson Med ; 84(2): 908-919, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31962373

RESUMEN

PURPOSE: To evaluate the complex fiber orientations and 3D collagen fiber network of knee joint connective tissues, including ligaments, muscle, articular cartilage, and meniscus using high spatial and angular resolution diffusion imaging. METHODS: Two rat knee joints were scanned using a modified 3D diffusion-weighted spin echo pulse sequence with the isotropic spatial resolution of 45 µm at 9.4T. The b values varied from 250 to 1250 s/mm2 with 31 diffusion encoding directions for 1 rat knee. The b value was fixed to 1000 s/mm2 with 147 diffusion encoding directions for the second knee. Both the diffusion tensor imaging (DTI) model and generalized Q-sampling imaging (GQI) method were used to investigate the fiber orientation distributions and tractography with the validation of polarized light microscopy. RESULTS: To better resolve the crossing fibers, the b value should be great than or equal to 1000 s/mm2 . The tractography results were comparable between the DTI model and GQI method in ligament and muscle. However, the tractography exhibited apparent difference between DTI and GQI in connective tissues with more complex collagen fibers network, such as cartilage and meniscus. In articular cartilage, there were numerous crossing fibers found in superficial zone and transitional zone. Tractography generated with GQI also resulted in more intact tracts in articular cartilage than DTI. CONCLUSION: High-resolution diffusion imaging with GQI method can trace the complex collagen fiber orientations and architectures of the knee joint at microscopic resolution.


Asunto(s)
Cartílago Articular , Imagen de Difusión Tensora , Animales , Cartílago Articular/diagnóstico por imagen , Colágeno , Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador , Articulación de la Rodilla/diagnóstico por imagen , Ratas
11.
Cell Metab ; 29(4): 966-978.e4, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30773468

RESUMEN

Skeletal stem cells (SSCs) are postulated to provide a continuous supply of osteoblasts throughout life. However, under certain conditions, the SSC population can become incorrectly specified or is not maintained, resulting in reduced osteoblast formation, decreased bone mass, and in severe cases, osteoporosis. Glutamine metabolism has emerged as a critical regulator of many cellular processes in diverse pathologies. The enzyme glutaminase (GLS) deaminates glutamine to form glutamate-the rate-limiting first step in glutamine metabolism. Using genetic and metabolic approaches, we demonstrate GLS and glutamine metabolism are required in SSCs to regulate osteoblast and adipocyte specification and bone formation. Mechanistically, transaminase-dependent α-ketoglutarate production is critical for the proliferation, specification, and differentiation of SSCs. Collectively, these data suggest stimulating GLS activity may provide a therapeutic approach to expand SSCs in aged individuals and enhance osteoblast differentiation and activity to increase bone mass.


Asunto(s)
Linaje de la Célula , Glutamina/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Femenino , Glutamina/análisis , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos
12.
Magn Reson Med ; 81(6): 3775-3786, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30671998

RESUMEN

PURPOSE: To evaluate whole knee joint tractography, including articular cartilage, ligaments, meniscus, and growth plate using diffusion tensor imaging (DTI) at microscopic resolution. METHODS: Three rat knee joints were scanned using a modified 3D diffusion-weighted spin echo pulse sequence with 90- and 45-µm isotropic spatial resolution at 9.4T. The b values varied from 250 to 1250 s/mm2 with 4 times undersampling in phase directions. Fractional anisotropy (FA) and mean diffusivity (MD) were compared at different spatial resolution and b values. Tractography was evaluated at multiple b values and angular resolutions in different connective tissues, and compared with conventional histology. The mean tract length and tract volume in various types of tissues were also quantified. RESULTS: DTI metrics (FA and MD) showed consistent quantitative results at 90- and 45-µm isotropic spatial resolutions. Tractography of various connective tissues was found to be sensitive to the spatial resolution, angular resolution, and diffusion weightings. Higher spatial resolution (45 µm) supported tracking the cartilage collagen fiber tracts from the superficial zone to the deep zone, in a continuous and smooth progression in the transitional zone. Fiber length and fiber volume in the growth plate were strongly dependent on angular resolution and b values, whereas tractography in ligaments was found to be less dependent on spatial resolution. CONCLUSION: High spatial and angular resolution DTI and diffusion tractography can be valuable for knee joint research because of its visualization capacity for collagen fiber orientations and quantitative evaluation of tissue's microscopic properties.


Asunto(s)
Ligamento Cruzado Anterior/diagnóstico por imagen , Cartílago Articular/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Rodilla de Cuadrúpedos/diagnóstico por imagen , Animales , Anisotropía , Ratas
13.
J Cell Physiol ; 233(7): 5431-5440, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30025440

RESUMEN

Intervertebral disc (IVD) degeneration is the major cause of back pain. Notch signaling is activated in annulus fibrosus (AF) and nucleus pulposus (NP) tissues of degenerated IVDs, and induced by IL1-ß and TNF-α in NP cells. However, the role of Notch activatin in the pathogenesis of IVD degeneration is largely unknown. In this study, we overexpressed the Notch1 intracellular domain (NICD1) in AF, NP, and chondrogenic ATDC5 cells via adenoviruses. Overexpression of NICD1 activated transcription of Notch signaling target genes in AF, NP, and ATDC5 cells, and caused cell type-specific effects on expression of matrix anabolic and catabolic genes. Activation of Notch signaling promoted expression of matrix catabolic genes and inhibited expression of matrix anabolic genes in both AF and ATDC5 cells, whereas its activation suppressed expression of matrix catabolic genes (including Mmp3, Mmp13, Adamts4, and Adamts5) and attenuated TNF-α and inflammatory macrophage-induced Mmp13 expression in NP cells. Consistently, sustained activation of Notch1 signaling in postnatal IVDs in mice severely disrupted growth plate and endplate cartilage tissues, but did not overly affect NP tissues. Together, these data indicated that activation of Notch signaling exerted differential and cell type-specific effects in intervertebral discs, and specific Notch signaling regulation may be considered during the treatment of IVD degeneration.


Asunto(s)
Anillo Fibroso/metabolismo , Degeneración del Disco Intervertebral/genética , Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Receptor Notch1/metabolismo , Animales , Anillo Fibroso/patología , Linaje de la Célula/genética , Condrogénesis/genética , Regulación de la Expresión Génica/genética , Humanos , Interleucina-1beta/genética , Disco Intervertebral/patología , Degeneración del Disco Intervertebral/patología , Macrófagos/metabolismo , Ratones , Núcleo Pulposo/patología , Ratas , Receptores Notch/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética
14.
Development ; 145(13)2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29899135

RESUMEN

During enchondral ossification, mesenchymal cells express genes regulating the intracellular biosynthesis of cholesterol and lipids. Here, we have investigated conditional deletion of Scap or of Insig1 and Insig2 (Scap inhibits intracellular biosynthesis and Insig proteins activate intracellular biosynthesis). Mesenchymal condensation and chondrogenesis was disrupted in mice lacking Scap in mesenchymal progenitors, whereas mice lacking the Insig genes in mesenchymal progenitors had short limbs, but normal chondrogenesis. Mice lacking Scap in chondrocytes showed severe dwarfism, with ectopic hypertrophic cells, whereas deletion of Insig genes in chondrocytes caused a mild dwarfism and shortening of the hypertrophic zone. In vitro studies showed that intracellular cholesterol in chondrocytes can derive from exogenous and endogenous sources, but that exogenous sources cannot completely overcome the phenotypic effect of Scap deficiency. Genes encoding cholesterol biosynthetic proteins are regulated by Hedgehog (Hh) signaling, and Hh signaling is also regulated by intracellular cholesterol in chondrocytes, suggesting a feedback loop in chondrocyte differentiation. Precise regulation of intracellular biosynthesis is required for chondrocyte homeostasis and long bone growth, and these data support pharmacological modulation of cholesterol biosynthesis as a therapy for select cartilage pathologies.


Asunto(s)
Desarrollo Óseo/fisiología , Colesterol/biosíntesis , Condrocitos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Diferenciación Celular/fisiología , Colesterol/genética , Condrocitos/citología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Células Madre Mesenquimatosas/citología , Ratones , Ratones Noqueados , Transducción de Señal/fisiología
15.
JCI Insight ; 2(22)2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29202453

RESUMEN

While the prevalence of osteoporosis is growing rapidly with population aging, therapeutic options remain limited. Here, we identify potentially novel roles for CaV1.2 L-type voltage-gated Ca2+ channels in osteogenesis and exploit a transgenic gain-of-function mutant CaV1.2 to stem bone loss in ovariectomized female mice. We show that endogenous CaV1.2 is expressed in developing bone within proliferating chondrocytes and osteoblasts. Using primary BM stromal cell (BMSC) cultures, we found that Ca2+ influx through CaV1.2 activates osteogenic transcriptional programs and promotes mineralization. We used Prx1-, Col2a1-, or Col1a1-Cre drivers to express an inactivation-deficient CaV1.2 mutant in chondrogenic and/or osteogenic precursors in vivo and found that the resulting increased Ca2+ influx markedly thickened bone not only by promoting osteogenesis, but also by inhibiting osteoclast activity through increased osteoprotegerin secretion from osteoblasts. Activating the CaV1.2 mutant in osteoblasts at the time of ovariectomy stemmed bone loss. Together, these data highlight roles for CaV1.2 in bone and demonstrate the potential dual anabolic and anticatabolic therapeutic actions of tissue-specific CaV1.2 activation in osteoblasts.


Asunto(s)
Resorción Ósea/metabolismo , Canales de Calcio Tipo L/metabolismo , Calcio/metabolismo , Estrógenos/metabolismo , Osteogénesis/fisiología , Transducción de Señal , Animales , Canales de Calcio Tipo L/genética , Proliferación Celular , Condrocitos/patología , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo II/metabolismo , Estrógenos/genética , Femenino , Fémur/patología , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Osteoblastos/metabolismo , Osteoclastos , Osteoprotegerina/metabolismo , Ovariectomía
16.
J Cell Sci ; 129(11): 2145-55, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27160681

RESUMEN

RBPjκ-dependent Notch signaling regulates multiple processes during cartilage development, including chondrogenesis, chondrocyte hypertrophy and cartilage matrix catabolism. Select members of the HES- and HEY-families of transcription factors are recognized Notch signaling targets that mediate specific aspects of Notch function during development. However, whether particular HES and HEY factors play any role(s) in the processes during cartilage development is unknown. Here, for the first time, we have developed unique in vivo genetic models and in vitro approaches demonstrating that the RBPjκ-dependent Notch targets HES1 and HES5 suppress chondrogenesis and promote the onset of chondrocyte hypertrophy. HES1 and HES5 might have some overlapping function in these processes, although only HES5 directly regulates Sox9 transcription to coordinate cartilage development. HEY1 and HEYL play no discernable role in regulating chondrogenesis or chondrocyte hypertrophy, whereas none of the HES or HEY factors appear to mediate Notch regulation of cartilage matrix catabolism. This work identifies important candidates that might function as downstream mediators of Notch signaling both during normal skeletal development and in Notch-related skeletal disorders.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cartílago/embriología , Cartílago/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Condrogénesis , Proteínas Represoras/metabolismo , Factor de Transcripción HES-1/metabolismo , Animales , Desarrollo Óseo/genética , Diferenciación Celular , Proliferación Celular , Condrogénesis/genética , Regulación del Desarrollo de la Expresión Génica , Hipertrofia , Células Madre Mesenquimatosas/metabolismo , Ratones , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción HES-1/genética , Transcripción Genética
17.
J Clin Invest ; 126(4): 1471-81, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26950423

RESUMEN

Fracture nonunions develop in 10%-20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity.


Asunto(s)
Células de la Médula Ósea/metabolismo , Curación de Fractura , Fracturas Óseas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Células Madre/metabolismo , Animales , Células de la Médula Ósea/patología , Fracturas Óseas/genética , Fracturas Óseas/patología , Ratones , Ratones Transgénicos , Receptores Notch/genética , Células Madre/patología , Células del Estroma/metabolismo , Células del Estroma/patología
18.
Bone Res ; 3: 15021, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26558140

RESUMEN

RBPjk-dependent Notch signaling regulates both the onset of chondrocyte hypertrophy and the progression to terminal chondrocyte maturation during endochondral ossification. It has been suggested that Notch signaling can regulate Sox9 transcription, although how this occurs at the molecular level in chondrocytes and whether this transcriptional regulation mediates Notch control of chondrocyte hypertrophy and cartilage development is unknown or controversial. Here we have provided conclusive genetic evidence linking RBPjk-dependent Notch signaling to the regulation of Sox9 expression and chondrocyte hypertrophy by examining tissue-specific Rbpjk mutant (Prx1Cre;Rbpjk(f/f) ), Rbpjk mutant/Sox9 haploinsufficient (Prx1Cre;Rbpjk(f/f);Sox9(f/+) ), and control embryos for alterations in SOX9 expression and chondrocyte hypertrophy during cartilage development. These studies demonstrate that Notch signaling regulates the onset of chondrocyte maturation in a SOX9-dependent manner, while Notch-mediated regulation of terminal chondrocyte maturation likely functions independently of SOX9. Furthermore, our in vitro molecular analyses of the Sox9 promoter and Notch-mediated regulation of Sox9 gene expression in chondrogenic cells identified the ability of Notch to induce Sox9 expression directly in the acute setting, but suppresses Sox9 transcription with prolonged Notch signaling that requires protein synthesis of secondary effectors.

19.
Sci Signal ; 8(386): ra71, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26198357

RESUMEN

Loss of NOTCH signaling in postnatal murine joints results in osteoarthritis, indicating a requirement for NOTCH during maintenance of joint cartilage. However, NOTCH signaling components are substantially increased in abundance in posttraumatic osteoarthritis in humans and mice, suggesting either a reparative or a pathological role for NOTCH activation in osteoarthritis. We investigated a potential dual role for NOTCH in joint maintenance and osteoarthritis by generating two mouse models overexpressing the NOTCH1 intracellular domain (NICD) within postnatal joint cartilage. The first mouse model exhibited sustained NOTCH activation to resemble pathological NOTCH signaling, whereas the second model had transient NOTCH activation, which more closely reflected physiological NOTCH signaling. Sustained NOTCH signaling in joint cartilage led to an early and progressive osteoarthritic-like pathology, whereas transient NOTCH activation enhanced the synthesis of cartilage matrix and promoted joint maintenance under normal physiological conditions. Through RNA-sequencing, immunohistochemical, and biochemical approaches, we identified several targets that could be responsible for NOTCH-mediated cartilage degradation, fibrosis, and osteoarthritis progression. These targets included components of the interleukin-6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinase signaling pathways, which may also contribute to the posttraumatic development of osteoarthritis. Together, these data suggest a dual role for the NOTCH pathway in joint cartilage, and they identify downstream effectors of NOTCH signaling as potential targets for disease-modifying osteoarthritis drugs.


Asunto(s)
Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Animales , Cartílago Articular/patología , Ratones , Ratones Transgénicos , Osteoartritis/genética , Osteoartritis/patología , Estructura Terciaria de Proteína , Receptor Notch1/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
20.
Stem Cells Transl Med ; 3(12): 1456-66, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25368376

RESUMEN

Human bone marrow-derived stromal/stem cells (BMSCs) have great therapeutic potential for treating skeletal disease and facilitating skeletal repair, although maintaining their multipotency and expanding these cells ex vivo have proven difficult. Because most stem cell-based applications to skeletal regeneration and repair in the clinic would require large numbers of functional BMSCs, recent research has focused on methods for the appropriate selection, expansion, and maintenance of BMSC populations during long-term culture. We describe here a novel biological method that entails selection of human BMSCs based on NOTCH2 expression and activation of the NOTCH signaling pathway in cultured BMSCs via a tissue culture plate coated with recombinant human JAGGED1 (JAG1) ligand. We demonstrate that transient JAG1-mediated NOTCH signaling promotes human BMSC maintenance and expansion while increasing their skeletogenic differentiation capacity, both ex vivo and in vivo. This study is the first of its kind to describe a NOTCH-mediated methodology for the maintenance and expansion of human BMSCs and will serve as a platform for future clinical or translational studies aimed at skeletal regeneration and repair.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica , Receptor Notch2/biosíntesis , Transducción de Señal , Células Madre/metabolismo , Células de la Médula Ósea/citología , Proteínas de Unión al Calcio , Células Cultivadas , Humanos , Péptidos y Proteínas de Señalización Intercelular , Proteína Jagged-1 , Proteínas de la Membrana , Ortopedia , Medicina Regenerativa , Proteínas Serrate-Jagged , Células Madre/citología , Células del Estroma/citología , Células del Estroma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA